Abstract
Nonlinear Schrodinger equation (NLSE) is the fundamental equation which describes the wave field envelope dynamics in a nonlinear and dispersive medium. However, if the fields have many components, one should consider the Coupled Nonlinear Schrodinger equation (CNLSE). We considered the interactions of orthogonally polarized and equal-amplitude vector solitons with two polarization directions. In this paper, we focused on the effect of Gaussian potential on the scattering of the vector soliton in CNLSE. The scattering process was investigated by the variational approximation method and direct numerical solution of CNLSE. Analytically, we analyzed the dynamics of the width and center of mass position of a soliton by the variational approximation method. Soliton may be reflected from each other or transmitted through or trapped. Initially, uncoupled solitons may form the coupled state if the kinetic energy of solitons less than the potential of attractive interaction between solitons but when its’ velocity above the critical velocity, the soliton will pass through each other easily. Meanwhile, a direct numerical simulation of CNLSE had been run to check the accuracy of the approximation. The result of the variational model gives a slightly similar pattern with direct numerical simulation of CNLSE by fixing the parameters for both solutions with the same value. The interaction of the vector soliton with Gaussian potential depends on the initial velocity and amplitude of the soliton and the strength of the external potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Malaysian Journal of Fundamental and Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.