Abstract

The applications of terahertz (THz) wireless communication require studies on link performance in all kinds of atmospheric conditions, including rain, fog, cloud, haze, and snow. Here, we present theoretical investigations on THz wave propagation in falling snow and through snow layers. Mie scattering theory is employed to fit the measured data. Good agreement confirms the applicability of Mie theory to dry and wet snow when gaseous attenuation and scintillation loss are considered. We investigate the scattering mechanism in a snow layer under different temperatures and water content. We find the THz wave suffers higher signal loss in snow than in rain under identical fall rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call