Abstract
Using the finite-difference time-domain method, we model the propagation of spatial optical solitons having two orthogonal electric field vector components, and the scattering of such solitons by compact subwavelength air holes (i.e., abrupt dielectric discontinuities in the direct paths of the solitons). Our propagation and scattering studies assume a realistic glass characterized by a three-pole Sellmeier linear dispersion, an instantaneous Kerr nonlinearity, and a dispersive Raman nonlinearity. An unexpected spatial soliton scattering phenomenon is observed: the coalescence of the scattered electromagnetic field into a propagating lower-energy spatial soliton at a point many tens of wavelengths beyond the scattering air hole. Overall, our computational technique is general, and should permit future investigations and design of devices exploiting spatial soliton interactions in background media having submicrometer air holes and dielectric and metal inclusions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.