Abstract

The interaction of obliquely incident surface gravity waves with a vertical flexible permeable submerged membrane wave barrier is investigated in the context of three-dimensional linear water wave theory. From the general formulation of the submerged membrane barrier, the performance of bottom-standing, surface-piercing and fully extended membrane wave barriers are analyzed for various values of wave and structural parameters. The analytic solution of the physical problem is obtained using eigenfunction expansion method and a coupled boundary element-finite difference method has been used to get the numerical solution. In the boundary element method, since the boundary condition on the membrane barrier is not known a priori, the membrane response and velocity potentials are solved simultaneously using appropriate discretization with the help of finite difference scheme. The convergence of the analytic and numerical solution techniques is discussed. The study reveals that for suitable combination of wave and structural parameters, approximately (45–50)% incident wave energy can be dissipated irrespective of membrane barrier configurations. Further, in certain situations, nearly full wave reflection and zero transmission occur for all barrier configurations. The study will be useful in the design of flexible permeable membrane to act as an effective wave barrier for creation of tranquility zone in the marine environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.