Abstract

The theory of scattering of low energy neutrinos and antineutrinos by atomic electrons has recently been developed [ I. B. Whittingham, Phys. Rev. D 105, 013008 (2022)] using the bound interaction picture in configuration space to fully implement the relationship between the neutrino helicities and the orbital and spin angular momenta of the atomic electrons. The energy spectra of ionization electrons produced by scattering of neutrinos and antineutrinos with energies of 5, 10, 20, and 30 keV by hydrogen, helium and neon were calculated using Dirac screened Coulombic eigenfunctions. This paper reports further applications of this theory, to a new calculation of the energy spectra for neon, as the original calculation used some screening constants which underestimated the effects of screening in the inner subshells, and to scattering by argon. The results are presented as ratios to the corresponding quantities for scattering by $Z$ free electrons. The new spectra ratios for neon are larger than the original ratios by $\ensuremath{\approx}0.03$--$\ensuremath{\approx}0.14$, with the greatest increases occurring for 10 keV neutrinos and antineutrinos. Integrated spectra ratios range from 0.16 to 0.59 for neon, and from 0.15 to 0.48 for argon, as the neutrino energy increases from 5 to 30 keV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.