Abstract

The analytical study of long-wave scattering in a canal with a rapidly varying cross-section is presented. It is assumed that waves propagate on a stationary current with a given flow rate. Due to the fixed flow rate, the current speed is different in the different sections of the canal, upstream and downstream. The scattering coefficients (the transmission and reflection coefficients) are calculated for all possible orientations of incident wave with respect to the background current (downstream and upstream propagation) and for all possible regimes of current (subcritical, transcritical, and supercritical). It is shown that in some cases negative energy waves can appear in the process of waves scattering. The conditions are found when the over-reflection and over transmission phenomena occur. In particular, it is shown that a spontaneous wave generation can arise in a transcritical accelerating flow, when the background current enhances due to the canal narrowing. This resembles a spontaneous wave generation on the horizon of an evaporating black hole due to the Hawking effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.