Abstract
Electromagnetic scattering of guided modes in a dielectric slab waveguide caused by an arbitrarily shaped broken end is analyzed theoretically by using the integral equation method. By solving the integral equations iteratively, the tangential components of the electric and magnetic fields on the broken end surface are determined, from which the reflected mode power, the radiation wave power and field patterns, and the total scattered power are obtained. Numerical results are presented for the plane-perpendicular, plane-tilted, and arc-shaped end surfaces. Both TE and TM modes are assumed as an incident wave.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.