Abstract

We numerically study the scattering coefficients of linear water waves on stationary flows above a localized obstacle. We compare the scattering on trans- and subcritical flows, and then focus on the latter which have been used in recent analog gravity experiments. The main difference concerns the magnitude of the mode amplification: whereas transcritical flows display a large amplification (which is generally in good agreement with the Hawking prediction), this effect is heavily suppressed in subcritical flows. This is due to the transmission across the obstacle for frequencies less than some critical value. As a result, subcritical flows display high- and low-frequency behaviors separated by a narrow band around the critical frequency. In the low-frequency regime, transmission of long wavelengths is accompanied by non-adiabatic scattering into short wavelengths, whose spectrum is approximately linear in frequency. By contrast, in the high-frequency regime, no simple description seems to exist. In particular, for obstacles similar to those recently used, we observe that the upstream slope still affects the scattering on the downstream side because of some residual transmission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.