Abstract

The cross section for inclusive electron scattering by nuclear matter is calculated at high momentum transfers using a microscopic spectral function, and compared with that extrapolated from data on laboratory nuclei. It is found that the cross section obtained with the plane-wave impulse approximation is close to the observed data at large values of the energy loss, but too small at low values. In this regime final-state interactions are important; after including their effects theory and data are in fair agreement. It is necessary to treat nucleon-nucleon correlations consistently in estimating the final-state interactions. The effects of possible time dependence of the nucleon-nucleon cross section, giving rise to nuclear transparency, are also investigated. The y scaling of the response function is discussed to further elucidate the role of final-state interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call