Abstract
An analytical study of the propagation of coherent sound waves through an atmosphere containing both mean and fluctuating flow variables is presented. The general flow problem is formulated as a time-dependent wave propagation in a half-space containing the turbulent medium. The coherent acoustic waves are analyzed by a smoothing technique, assuming that mean flow variables vary with the height only. The general equations for the coherent waves are derived, and then applied to two special cases, corresponding to uniform and shear mean flow, respectively. The results show that mean shear and turbulence introduce pronounced effects on the propagation of coherent acoustic disturbances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.