Abstract

Our primary goal is to provide a rigorous treatment of scattering nonlocality in semiconductor nanostructures. On the one hand, starting from the conventional density-matrix formulation and employing as ideal instrument for the study of the semiclassical limit the well-known Wigner-function picture, we shall perform a fully quantum-mechanical derivation of the space-dependent Boltzmann equation. On the other hand, we shall examine the validity limits of such semiclassical framework, pointing out, in particular, regimes where scattering-nonlocality effects may play a relevant role; to this end we shall supplement our analytical investigation with a number of simulated experiments, discussing and further expanding preliminary studies of scattering-induced quantum diffusion in GaN-based nanomaterials. As for the case of carrier-carrier relaxation in photoexcited semiconductors, our analysis will show the failure of simplified dephasing models in describing phonon-induced scattering nonlocality, pointing out that such limitation is particularly severe for the case of quasielastic dissipation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.