Abstract

We develop a scattering matrix approach for the numerical calculation of resonant states and Q values of a nonideal optical disk cavity with an arbitrary shape and with an arbitrary varying refraction index. The developed method is applied to study the effect of surface roughness and inhomogeneity of the refraction index on Q values of microdisk cavities for lasing applications. We demonstrate that even small surface roughness (deltar < or approximately equal to lambda/50) can lead to a drastic degradation of high-Q cavity modes by many orders of magnitude. The results of the numerical simulation are analyzed and explained in terms of wave reflection at a curved dielectric interface, combined with an examination of Poincaré surfaces of section and of Husimi distributions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call