Abstract

A scattering matrix (S-matrix) analysis method was developed for evaluating hydrogenated amorphous silicon (a-Si:H)-based thin film solar cells. In this approach, light wave vectors A and B represent the incoming and outgoing behaviors of the incident solar light, respectively, in terms of coherent wave and incoherent intensity components. The S-matrix determines the relation between A and B according to optical effects such as reflection and transmission, as described by the Fresnel equations, scattering at the boundary surfaces, or scattering within the propagation medium, as described by the Beer-Lambert law and the change in the phase of the propagating light wave. This matrix can be used to evaluate the behavior of angle-incident coherent and incoherent light simultaneously, and takes into account not only the light scattering process at material boundaries (haze effects) but also nonlinear optical processes within the material. The optical parameters in the S-matrix were determined by modeling both a 2%-gallium-doped zinc oxide transparent conducting oxide and germanium-compounded a-Si:H (a-SiGe:H). Using the S-matrix equations, the photocurrent for an a-Si:H/a-SiGe:H tandem cell and the optical loss in semitransparent a-Si:H solar cells for use in building-integrated photovoltaic applications were analyzed. The developed S-matrix method can also be used as a general analysis tool for various thin film solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call