Abstract

We show global existence backward from scattering data at infinity for semilinear wave equations satisfying the null condition or the weak null condition. Semilinear terms satisfying the weak null condition appear in many equations in physics. The scattering data is given in terms of the radiation field, although in the case of the weak null condition there is an additional logarithmic term in the asymptotic behavior that has to be taken into account. Our results are sharp in the sense that the solution has the same spatial decay as the radiation field does along null infinity, which is assumed to decay at a rate that is consistent with the forward problem. The proof uses a higher order asymptotic expansion together with a new fractional Morawetz estimate with strong weights at infinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.