Abstract
A tumor microenvironment (TME)-responsive nanoprobe composed of a fluorescent dye-decorated silicon (Si) nanosphere core and a thin MnO2 shell is proposed for simple and intelligent detection of cancer cells. The Si nanosphere core with diameters of 100-200 nm provides environment-independent Mie scattering imaging, while, simultaneously, the MnO2 shell provides the capability to switch the on/off state of the dye fluorescence reacted to the glutathione (GSH) and/or H2O2 levels in a cancer cell. Si-MnO2 core-shell nanosphere probes are fabricated in a solution-based process from crystalline Si nanosphere cores. The fluorescence switching under exposure to GSH is demonstrated, and the mechanism is discussed based on detailed optical characterizations including single-particle spectroscopy. Different types of human cells are incubated with the nanoprobes, and a proof of concept experiment is performed. From the combination of the robust scattering images and GSH- and H2O2-sensitive fluorescence images, the feasibility of cancer cell detection by the multimodal nanoprobes is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.