Abstract
We introduce a natural generalization of the scattering equations, which connect the space of Mandelstam invariants to that of points on ℂℙ1, to higher-dimensional projective spaces ℂℙk − 1. The standard, k = 2 Mandelstam invariants, sab, are generalized to completely symmetric tensors {mathrm{s}}_{a_1{a}_2dots {a}_k} subject to a ‘massless’ condition {mathrm{s}}_{a_1{a}_2dots {a}_{k-2}bb}=0 and to ‘momentum conservation’. The scattering equations are obtained by constructing a potential function and computing its critical points. We mainly concentrate on the k = 3 case: study solutions and define the generalization of biadjoint scalar amplitudes. We compute all ‘biadjoint amplitudes’ for (k, n) = (3, 6) and find a direct connection to the tropical Grassmannian. This leads to the notion of k = 3 Feynman diagrams. We also find a concrete realization of the new kinematic spaces, which coincides with the spinor-helicity formalism for k = 2, and provides analytic solutions analogous to the MHV ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.