Abstract

Positron emission tomography (PET) had been utilized to image gene therapy, estimate tumor growth, detect neural function of the brain, and diagnose disease. However, sinogram noise always results inaccurate PET images. The factorial design of experiment (DOE), a statistical method, was applied to investigate, correct and estimate the fraction of scattering of 2D sinogram in PET. The DOE was included as factors of angle views and scatter media with two levels designed. The PET sinogram after scattering correction was then reconstructed by filtered back projection (FBP). Both Ge-68 uniform phantom and Jaszczak anthropomorphic torso phantom were applied to exam the performance of presented scattering correction algorithm. The signal-to-noise ratio (SNR), standard deviation (STD) of background, and full width at half maximum (FWHM), and uniformity test were applied to validate the performance of presented method. The proposed method provides a narrower FWHM, smaller STD of the background, higher SNR and better uniformity than those of original protocols. This method should be tested for accuracy and feasibility with three-dimensional phantoms or real animal studies and consideration effects of cross-talk between slices in future work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.