Abstract

The scattering centers (SCs) of low-detectable targets (LDTs) have a low scattering intensity. It is difficult to build the SC model of an LDT using the existing methods because these methods mainly concern dominant SCs with strong scattering contributions. This paper presents an SC modeling approach to acquire the weak SCs of LDTs. We employ the induced currents at the LDT to search SCs, and the joint time-frequency transform together with the Hough transform to separate the scattering contributions of different SCs. Particle swarm optimization (PSO) is applied to improve the estimation results of SCs. The accuracy of the SC model built by this approach is verified by a full-wave numerical method. The validation results show that the SC model of the LDT can precisely simulate the signatures of high-resolution images, such as high-resolution range profile and inverse synthetic aperture radar (ISAR) images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.