Abstract
PurposeThe purpose of this study is the formulation of an efficient method to compute and analyse the scattering characteristics of cracks or grooves in a conducting object, where the size of the crack is significantly larger than the wavelength of an incident plane wave.Design/methodology/approachA hybrid finite element-boundary element procedure is formulated for the computation of the scattering properties of the object, where the fast multipole method is used in the boundary integral formulation. The basic fast multipole procedure is enhanced by utilising a fast Fourier transform-based convolution algorithm for the computation of the interactions between groups of source and field elements.FindingsThe algorithm accelerates the evaluation of the group interactions and enables the reduction of the memory requirements without introducing an additional approximation into the procedure.Originality/valueThe fast multipole method with convolution algorithm shows to be more efficient for the computation of scattering problems with a large number of unknowns than the conventional procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: COMPEL - The international journal for computation and mathematics in electrical and electronic engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.