Abstract

A new classical ion trajectory simulation program based on the binary collision approximation has been developed in order to support the results of time-of-flight scattering and recoiling spectrometry (TOF-SARS) and scattering and recoiling imaging spectrometry (SARIS). The code was designed to provide information directly related to the TOF-SARS and SARIS measurements and to operate efficiently on small personal computers. The calculation uses the Ziegler-Biersack-Littmark (ZBL) universal screening function or the Moliére screening function to simulate the three-dimensional motion of atomic particles and includes simultaneous collisions involving several atoms. For TOF-SARS, the program calculates the energy and time-of-flight distributions of scattered and recoiled particles, polar (incident) angle α-scans, and azimuthal angle δ-scans. For SARIS, the program provides images of the scattering and recoiling intensities in polar exit angle and azimuthal angle (β, δ)-space. A two-dimensional reliability factor ( R) has been developed in order to obtain a quantitative comparison of experimental and simulated images. Examples of simulations are presented for Ni{100}, {110} and {111} surfaces and a Pt{111} surface. The R-factor is used to quantitatively compare the simulated Pt{111} image to an experimentally emulated image.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call