Abstract

The fast dipole method (FDM) is extended to analyze the scattering of dielectric and magnetic materials by solving the volume integral equation (VIE). The FDM is based on the equivalent dipole method (EDM) and can achieve the separation of the field dipole and source dipole, which reduces the complexity of interactions between two far groups (such as groupiand groupj) fromO(NiNj)toO(Ni+Nj), whereNiandNjare the numbers of dipoles in groupiand groupj, respectively. Targets including left-handed materials (LHMs), which are a kind of dielectric and magnetic materials, are calculated to demonstrate the merits of the FDM. Furthermore, in this study we find that the convergence may become much slower when the targets include LHMs compared with conventional electromagnetic materials. Numerical results about convergence characteristics are presented to show this property.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.