Abstract
We establish a direct connection between scattering amplitudes in planar four-dimensional theories and a remarkable mathematical structure known as the positive Grassmannian. The central physical idea is to focus on on-shell diagrams as objects of fundamental importance to scattering amplitudes. We show that the all-loop integrand in N=4 SYM is naturally represented in this way. On-shell diagrams in this theory are intimately tied to a variety of mathematical objects, ranging from a new graphical representation of permutations to a beautiful stratification of the Grassmannian G(k,n) which generalizes the notion of a simplex in projective space. All physically important operations involving on-shell diagrams map to canonical operations on permutations; in particular, BCFW deformations correspond to adjacent transpositions. Each cell of the positive Grassmannian is naturally endowed with positive coordinates and an invariant measure which determines the on-shell function associated with the diagram. This understanding allows us to classify and compute all on-shell diagrams, and give a geometric understanding for all the non-trivial relations among them. Yangian invariance of scattering amplitudes is transparently represented by diffeomorphisms of G(k,n) which preserve the positive structure. Scattering amplitudes in (1+1)-dimensional integrable systems and the ABJM theory in (2+1) dimensions can both be understood as special cases of these ideas. On-shell diagrams in theories with less (or no) supersymmetry are associated with exactly the same structures in the Grassmannian, but with a measure deformed by a factor encoding ultraviolet singularities. The Grassmannian representation of on-shell processes also gives a new understanding of the all-loop integrand for scattering amplitudes, presenting all integrands in a novel dLog form which directly reflects the underlying positive structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.