Abstract

Patient-independent detection of epileptic activities based on visual spectral representation of continuous EEG (cEEG) has been widely used for diagnosing epilepsy. However, precise detection remains a considerable challenge due to subtle variabilities across subjects, channels and time points. Thus, capturing fine-grained, discriminative features of EEG patterns, which is associated with high-frequency textural information, is yet to be resolved. In this work, we propose Scattering Transformer (ScatterFormer), an invariant scattering transform-based hierarchical Transformer that specifically pays attention to subtle features. In particular, the disentangled frequency-aware attention (FAA) enables the Transformer to capture clinically informative high-frequency components, offering a novel clinical explainability based on visual encoding of multichannel EEG signals. Evaluations on two distinct tasks of epileptiform detection demonstrate the effectiveness our method. Our proposed model achieves median AUCROC and accuracy of 98.14%, 96.39% in patients with Rolandic epilepsy. On a neonatal seizure detection benchmark, it outperforms the state-of-the-art by 9% in terms of average AUCROC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.