Abstract
We study an undocumented large translucent cloud, detected by means of its enhanced radiation on the SHASSA (Southern H-Alpha Sky Survey Atlas) survey. We consider whether its excess surface brightness can be explained by light scattered off the dust grains in the cloud, or whether emission from in situ ionized gas is required. In addition, we aim to determine the temperature of dust, the mass of the cloud, and its possible star formation activity. We compare the observed H-alpha surface brightness of the cloud with predictions of a radiative transfer model. We use the WHAM (Wisconsin H-Alpha Mapper) survey as a source for the Galactic H-alpha interstellar radiation field illuminating the cloud. Visual extinction through the cloud is derived using 2MASS J, H, and K band photometry. We use far-IR ISOSS (ISO Serendipitous Survey), IRAS, and DIRBE data to study the thermal emission of dust. The LAB (The Leiden/Argentine/Bonn Galactic HI Survey) is used to study 21cm HI emission associated with the cloud. Radiative transfer calculations of the Galactic diffuse H-alpha radiation indicate that the surface brightness of the cloud can be explained solely by radiation scattered off dust particles in the cloud. The maximum visual extinction through the cloud is about 1.2mag. The cloud is found to be associated with 21cm HI emission at a velocity of about -9 km/s. The total mass of the cloud is about 550-1000 solar masses. There is no sign of star formation in this cloud. The distance of the cloud is estimated from the Hipparcos data to be about 100 pc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.