Abstract
The problem of fitting a nice curve or surface to scattered, possibly noisy, data arises in many applications in science and engineering. In this paper we solve the problem using a standard regularized least square framework in an approximation space spanned by the shifts and dilates of a single compactly supported function ϕ . We first provide an error analysis to our approach which, roughly speaking, states that the error between the exact (probably unknown) data function and the obtained fitting function is small whenever the scattered samples have a high sampling density and a low noise level. We then give a computational formulation in the univariate case when ϕ is a uniform B-spline and in the bivariate case when ϕ is the tensor product of uniform B-splines. Though sparse, the arising system of linear equations is ill-conditioned; however, when written in terms of a short support wavelet basis with a well-chosen normalization, the resulting system, which is symmetric positive definite, appears to be well-conditioned, as evidenced by the fast convergence of the conjugate gradient iteration. Finally, our method is compared with the classical cubic/thin-plate smoothing spline methods via numerical experiments, where it is seen that the quality of the obtained fitting function is very much equivalent to that of the classical methods, but our method offers advantages in terms of numerical efficiency. We expect that our method remains numerically feasible even when the number of samples in the given data is very large.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.