Abstract

Iris Recognition at-a Distance (IAAD) is a major challenge for researchers due to the defects associated with the visual imaging and poor image quality in dynamic environments, which imposed bad impacts on the accuracy of recognition. Thus, in order to enable the effective IAAD, this paper proposes a new method, named, Chronological Monarch Butterfly Optimization (Chronological MBO)-enabled Neural Network (NN). The recognition of iris using NN is trained with the proposed Chronological MBO, which is developed through the combination of Chronological theory in Monarch Butterfly Optimization (MBO). The recognition becomes effective with the automatic segmentation and the normalization of iris image on the basis of Hough Transform (HT) and Daugman's rubber sheet model followed with the process of feature extraction with the developed ScatT-LOOP descriptor, which is the integration of scattering transform (ST), Local Optimal Oriented Pattern (LOOP) descriptor, and Tetrolet transform (TT). The developed ScatT-LOOP descriptor extracts the texture as well as the orientation details of image for effective recognition. The analysis is evaluated with the CASIA Iris dataset with respect to the evaluation metrics, accuracy, False Acceptance Rate (FAR), and False Rejection Rate (FRR). The proposed method has the accuracy, FRR, and FAR of 0.97, 0.005, and 0.005, respectively. The experimental results proved that the proposed method is effective than the existing methods of iris recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.