Abstract
The Human Cell Atlas (HCA) is a large project that aims to identify all cell types in the human body. The dimension reduction and clustering for identification of cell types from single-cell RNA-sequencing (scRNA-seq) data have become foundational approaches to HCA. The major challenges of current computational analyses are of poor performance on large scale data and sensitive to initial data. We present a new ensemble framework called Adaptive Slice KNNs (scASK) to address the challenges for analyzing scRNA-seq data with high dimensionality. scASK consists of three innovational modules, called DAS (Data Adaptive Slicing), MCS (Meta Classifiers Selecting) and EMS (Ensemble Mode Switching), respectively, which facilitate scASK to approximate a bias-variance tradeoff beyond classification. Thirteen real scRNA-seq datasets are used to evaluate the performance of scASK. Compared with five popular classification algorithms, our experimental results indicate that scASK achieves the best accuracy and robustness among all competing methods. In conclusion, adaptive slicing is an effective structural reduction procedure, and meanwhile scASK provides novel and robust ensemble framework especially for classifying cell types based on scRNA-seq data. scASK is now publically available at https://github.com/liubo2358/scASKcmd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.