Abstract

Experimental data are provided for physical understanding and computational fluid dynamics (CFD) validation for the surface combatant David–Taylor model basin Model 5415 bow and shoulder wave breaking. A photographic study was conducted using 5.72m replica and 3.05m geosim models of Model 5415 over a range of Froude numbers (Fr) to identify Fr and scale effects on wave breaking and choose the best Fr for the local flow measurements, which include near- and far-field means and rms wave elevation and mean velocity under the breaking waves. The larger model and Fr=0.35 were selected due to the large extents of quasisteady plunging bow and spilling shoulder wave breaking. A direct correlation is shown between regions of wave slope larger than 17deg and regions of large rms in wave height variation. Scars characterized by sudden changes in the mean wave height and vortices induced by wave breaking were identified. Complementary CFD solutions fill the gaps in the relatively sparse measurements enabling a more complete description of the bow and shoulder wave breaking and induced vortices and scars. The combined results have important implications regarding the modeling of the bubbly flow around surface ships, especially for bubble sources and entrainment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.