Abstract

Deficiency in the clearance of cellular debris is a major pathogenic factor in the emergence of autoimmune diseases. We previously demonstrated that mice deficient for scavenger receptor class F member 1 (SCARF1) develop a lupus-like autoimmune disease with symptoms similar to human systemic lupus erythematosus (SLE), including a pronounced accumulation of apoptotic cells (ACs). Therefore, we hypothesized that SCARF1 will be important for clearance of ACs and maintenance of self-tolerance in humans, and that dysregulation of this process could contribute to SLE. In this article, we show that SCARF1 is highly expressed on phagocytic cells, where it functions as an efferocytosis receptor. In healthy individuals, we discovered that engagement of SCARF1 by ACs on BDCA1+ dendritic cells initiates an IL-10 anti-inflammatory response mediated by the phosphorylation of STAT1 and STAT3. Unexpectedly, there was no significant difference in SCARF1 expression in samples of patients with SLE compared with healthy donor samples. However, we detected anti-SCARF1 autoantibodies in 26% of patients with SLE, which was associated with dsDNA Ab positivity. Furthermore, our data show a direct correlation of the levels of anti-SCARF1 in the serum and defects in the removal of ACs. Depletion of Ig restores efferocytosis in SLE serum, suggesting that defects in the removal of ACs are partially mediated by SCARF1 pathogenic autoantibodies. Our data demonstrate that human SCARF1 is an AC receptor in dendritic cells and plays a role in maintaining tolerance and homeostasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call