Abstract

Processing ScanSAR or burst-mode SAR data by standard high precision algorithms (e.g., range/Doppler, wavenumber domain, or chirp scaling) is shown to be an interesting alternative to the normally used SPECAN (or deramp) algorithm. Long burst trains with zeroes inserted into the interburst intervals can be processed coherently. This kind of processing preserves the phase information of the data-an important aspect for ScanSAR interferometry. Due to the interference of the burst images the impulse response shows a periodic modulation that can be eliminated by a subsequent low-pass filtering of the detected image. This strategy allows an easy and safe adaptation of existing SAR processors to ScanSAR data if throughput is not an issue. The images are automatically consistent with regular SAR mode images both with respect to geometry and radiometry. The amount and diversity of the software for a multimode SAR processor are reduced. The impulse response and transfer functions of a burst-mode end-to-end system are derived. Special attention is drawn to the achievable image quality, the radiometric accuracy, and the effective number of looks. The scalloping effect known from burst-mode systems can be controlled by the spectral weighting of the processor transfer function. It is shown that the fact that the burst cycle period is in general not an integer multiple of the sampling grid distance does not complicate the algorithm. An image example using X-SAR data for simulation of a burst system is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call