Abstract
In higher organisms, individual cells respond to signals and perturbations by epigenetic regulation and transcriptional adaptation. However, in addition to shifting the expression level of individual genes, the adaptive response of cells can also lead to shifts in the proportions of different cell types. Recent methods such as scRNA-seq allow for the interrogation of expression on the single-cell level, and can quantify individual cell type clusters within complex tissue samples. In order to identify clusters showing differential composition between different biological conditions, differential proportion analysis has recently been introduced. However, bioinformatics tools for robust proportion analysis of both replicated and unreplicated single-cell datasets are critically missing. In this manuscript, we present Scanpro, a modular tool for proportion analysis, seamlessly integrating into widely accepted frameworks in the Python environment. Scanpro is fast, accurate, supports datasets without replicates, and is intended to be used by bioinformatics experts and beginners alike.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.