Abstract
A comparison is made between the electronic structures determined in ultrahigh vacuum of three surfaces using scanning tunneling spectroscopy (STS) and Kelvin probe force microscopy (KPFM). STS and KPFM illustrates Fermi level pinning of clean InAs(001)-(4×2) and InGaAs(001)-(4×2) surfaces and near flat band conditions for InAs(110) cleaved surfaces. However, for InAs(001)-(4×2) and InGaAs(001)-(4×2), STS and KPFM data show very different positions for the surface Fermi level on identical samples; it is hypothesized that the difference is due to the Fermi level measured by KPFM being shifted by a static charge dipole to which STS is much less sensitive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.