Abstract
Scanning tunneling microscopy has been employed to study the adsorption of disilane (${\mathrm{Si}}_{2}$${\mathrm{H}}_{6}$) and pyrolytic growth on Si(100)-(2\ifmmode\times\else\texttimes\fi{}1) at various temperatures. Room-temperature exposures result in a random distribution of dissociation fragments on the surface. Formation of anisotropic monohydride islands and denuded zones as well as island coarsening is observed at higher temperatures. The results are strikingly similar to those reported for growth by molecular-beam epitaxy using pure Si, even though different surface reactions are involved in these two growth processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.