Abstract

The surface structures formed upon deposition of O2 and Ga2O onto the technologically important arsenic-rich GaAs(001)-c(2×8)/(2×4) surface have been studied using scanning tunneling microscopy and spectroscopy, and the results are compared to density functional theory calculations. O2 chemisorbs by displacing first layer arsenic atoms bonded to second layer gallium atoms. Oxygen chemisorption pins the Fermi level at less than 5% monolayer coverage by creating a donor and acceptor site within the band gap originating from the gallium atom bonded between the two O atoms. In contrast, Ga2O chemisorbs by inserting into arsenic dimer pairs at elevated surface temperatures. A monolayer of Ga2O forms a (2×2) surface structure with a crystalline interface that is electronically unpinned: there are no states within the band gap. The unpinned interface results from Ga2O restoring the surface arsenic and gallium atoms to near-bulk charge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.