Abstract

The local luminescence properties of individual CdSe nanowires composed of segments of zinc blende and wurtzite crystal structures are investigated by low-temperature scanning tunneling luminescence spectroscopy. Light emission from the wires is achieved by the direct injection of holes and electrons, without the need for coupling to tip-induced plasmons in the underlying metal substrate. The photon energy is found to increase with decreasing wire diameter due to exciton confinement. The bulk bandgap extrapolated from the energy versus diameter dependence is consistent with photon emission from the zinc blende-type CdSe sections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.