Abstract

The feasibility of imaging porin membrane, which is a reconstituted biological membrane consisting of phospholipid and protein, was studied by scanning tunneling microscopy (STM). Due to detailed knowledge of its composition from biochemical and its three-dimensional (3D) structure from electron microscopical analysis, porin vesicles seem to be a suitable model specimen for exploring the application of STM in biology. Unstained vesicles adsorbed onto a thin amorphous carbon film supported by a finder grid were localized using a scanning transmission electron microscope (STEM) at low irradiation doses ( < 100 e − nm 2 ). Suitable areas of the sample were then positioned in the STM by a light optical telescope. STM images taken under ambient pressure from empty amorphous carbon films exhibited corrugations in the range of ⩽ 1 nm, whereas steps having a height of 5 nm were reproducibly observed on grids with porin vesicles. Since this value is in good agreement with that obtained from air-dried metal shadowed vesicles, we interpret these steps as the edges of porin membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call