Abstract

Platelets and their subcellular components (e.g., dense granules) are essential components in hemostasis. Understanding their chemical heterogeneities at the sub-micrometer scale, particularly their activation during hemostasis and production of platelet-derived extracellular vesicles, may provide important insights into their mechanisms; however, this has rarely been investigated, mainly owing to the lack of appropriate chemical characterization tools at nanometer scale. Here, the use of scanning transmission X-ray microscopy (STXM) combined with X-ray absorption near edge structure (XANES) to characterize human platelets and their subcellular components at the carbon K-edge and calcium L2,3-edge, is reported. STXM images can identify not only the spatial distribution of subcellular components in human platelets, such as dense granules (DGs) with sizes of ~200 nm, but also their granule-to-granule chemical heterogeneities on the sub-micrometer scale, based on their XANES spectra. The calcium distribution map as well as the principal component analysis of the STXM image stacks clearly identified the numbers and locations of the calcium-rich DGs within human platelets. Deconvolution of the carbon K-edge XANES spectra, extracted from various locations in the platelets, showed that amide carbonyl and carboxylic acid functional groups were mainly found in the cytoplasm, while ketone-phenol-nitrile-imine, aliphatic, and carbonate functional groups were dominant in the platelet DGs. These observations suggest that platelet DGs are most likely composed of calcium polyphosphate associated with adenosine triphosphate (ATP) and adenosine diphosphate (ADP), with significant granule-to-granule variations in their compositions, while the cytoplasm regions of platelets contain significant amounts of proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.