Abstract

We have applied scanning transmission electron microscopy to intact native fibrillin-containing microfibrils isolated from foetal bovine elastic tissues in order to derive new insights into microfibril organisation. This technique provides quantitative data on the mass per unit length and axial mass distribution of unstained, unshadowed macromolecules. Scanning transmission electron microscopy of microfibrils from aorta, skin and nuchal ligament revealed that the beads corresponded to peaks of mass and the interbead regions to troughs of mass. These major features of axial mass distribution were characteristic of all microfibrils examined. Tissue-specific and age-dependent variations in mass were identified in microfibrils that were structurally comparable by rotary shadowing electron microscopy. Increased microfibril mass correlated with increasing gestational age. The additional mass was associated predominantly at, or close to, the bead. Some microfibril populations exhibited pronounced assymetry in their axial mass distribution. These data indicate that intact native microfibrillar assemblies from developing elastic tissues are heterogeneous in composition. Loss of mass following chondroitinase ABC or AC lyase treatment confirmed the presence of chondroitin sulphate in nuchal ligament microfibrillar assemblies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.