Abstract

This paper presents a technique, scanning thermal wave microscopy (STWM), which can image the phase lag and amplitude of thermal waves with sub-micrometer resolution by scanning a temperature-sensing nanoscale tip across a sample surface. Phase lag measurements during tip-sample contact showed enhancement of tip-sample heat transfer due to the presence of a liquid film. The measurement accuracy of STWM is proved by a benchmark experiment and comparison to theoretical prediction. The application of STWM for sub-surface imaging of buried structures is demonstrated by measuring the phase lag and amplitude distributions of an interconnect via sample. The measurement showed excellent agreement with a finite element analysis offering the promising prospects of three-dimensional thermal probing of micro and nanostructures. Finally, it was shown that the resolving power of thermal waves for subsurface structures improves as the wavelengths of the thermal waves become shorter at higher modulation frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.