Abstract

A model describing the size and arrangement of mineral particles in bone tissues is used to analyse the results of a scanning small-angle X-ray scattering (SAXS) experiment on a pathological bone biopsy. The overall description assumes that the nanometre-sized mineral platelets are arranged in a parallel fashion with possible fluctuations in their relative position, orientation and thickness. This method is tested on a thin sample section obtained from the biopsy of an osteoporotic patient treated with a high cumulative dose of NaF. The mineralization pattern of fluorotic bone is known to exhibit significant differences as compared to healthy bone in terms of density, particle size and organization. This is the first attempt to provide quantitative indicators of the degree of regularity in the packing of the mineral platelets in human pathological bone. Using scanning SAXS with a synchrotron microbeam of 15 µm allows discrimination between pathological and healthy bone at the tissue level. Additionally, the benefits of this method are discussed with respect to the accuracy of particle size determination using SAXS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.