Abstract

Scanning resonator microscopy (SRM) is a scanning probe technique that uses a small, optical resonator attached to the end of a conventional atomic force microscopy cantilever to simultaneously measure optical and topography properties of sample surfaces. In SRM, whispering gallery mode (WGM) resonances excited in the attached optical resonator shift in response to changes in surface refractive index (RI), providing a mechanism for mapping RI with high spatial resolution. In our initial report, the SRM tip was excited with a fixed excitation wavelength during sample scanning, which limits the approach. An improved method based on a wavelength modulation coupled with phase sensitive detection is reported here. This results in real-time characterization of WGM spectral shifts while eliminating complications arising from measurements based solely on signal intensity. This improved approach, combined with a modified tip design enabling integration of smaller resonators, is shown to enhance signal-to-noise and lead to sub-100nm spatial resolution in the SRM optical image. The improved capabilities are demonstrated through measurements on thin dielectric and polymer films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.