Abstract

Contact electrification (CE or triboelectrification) is a common phenomenon, which can occur for almost all types of materials. In previous studies, the CE between insulators and metals has been widely discussed, while CE involving semiconductors is only recently. Here, a tribo-current is generated by sliding an N-type diamond coated tip on a P-type or N-type Si wafers. The density of surface states of the Si wafer is changed by introducing different densities of doping. It is found that the tribo-current between two sliding semiconductors increases with increasing density of surface states of the semiconductor and the sliding load. The results suggest that the tribo-current is induced by the tribovoltaic effect, in which the electron-hole pairs at the sliding interface are excited by the energy release during friction, which may be due to the transition of electrons between the surface states during contact, or bond formation across the sliding interface. The electron-hole pairs at the sliding interface are subsequently separated by the built-in electric field at the PN or NN heterojunctions, which results in a tribo-current, in analogy to that which occurs in the photovoltaic effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.