Abstract

Nitrogen vacancy (NV−) centers possess exceptional sensitivity to magnetic field even under ambient condition. The optically detectable electron spins and the atomic size make it a promising candidate for advanced magnetic resonance imaging (MRI) technique with nanoscale spatial resolution. In this work, diamond particles with NV− centers were deposited by microwave plasma chemical vapor deposition (MPCVD) under gaseous N 2 dopant and were fixed on the fabricated scanning probe as a magnetic sensor. While the existence of NV− center was determined by Raman spectroscopy, the photoluminescence intensity at 2.87 GHz microwave frequency was decreased by an optically detected magnetic resonance (ODMR) system. It implies that the NV− spin state can be manipulated and read out using optical excitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.