Abstract

Titanium dioxide, or titania, sensitized with organic dyes is a very attractive platform for photovoltaic applications. In this context, the knowledge of properties of the titania–sensitizer junction is essential for designing efficient devices. Consequently, studies on the adsorption of organic dyes on titania surfaces and on the influence of the adsorption geometry on the energy level alignment between the substrate and an organic adsorbate are necessary. The method of choice for investigating the local environment of a single dye molecule is high-resolution scanning probe microscopy. Microscopic results combined with the outcome of common spectroscopic methods provide a better understanding of the mechanism taking place at the titania–sensitizer interface. In the following paper, we review the recent scanning probe microscopic research of a certain group of molecular assemblies on rutile titania surfaces as it pertains to dye-sensitized solar cell applications. We focus on experiments on adsorption of three types of prototypical dye molecules, i.e., perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), phtalocyanines and porphyrins. Two interesting heteromolecular systems comprising molecules that are aligned with the given review are discussed as well.

Highlights

  • Today it comes as no surprise that photovoltaic devices can be made of materials other than silicon

  • We focus on experiments on adsorption of three types of prototypical dye molecules, i.e., perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), phtalocyanines and porphyrins

  • We review some of the recent research of molecular assemblies on rutile titania surfaces as it pertains to dye-sensitized solar cell applications

Read more

Summary

Introduction

Today it comes as no surprise that photovoltaic devices can be made of materials other than silicon. In a more recent study, the same authors examined the influence of the substrate temperature on the ordering in the formed molecular layers (see Figure 2), showing that it is possible to obtain homogeneous molecular islands by annealing PTCDA/TiO2(110) at 100 °C [31].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call