Abstract

Scanning probe lithography is used to directly pattern monolayer transition metal dichalcogenides (TMDs) without the use of a sacrificial resist. Using an atomic-force microscope, a negatively biased tip is brought close to the TMD surface. By inducing a water bridge between the tip and the TMD surface, controllable oxidation is achieved at the sub-100 nm resolution. The oxidized flake is then submerged into water for selective oxide removal which leads to controllable patterning. In addition, by changing the oxidation time, thickness tunable patterning of multilayer TMDs is demonstrated. This resist-less process results in exposed edges, overcoming a barrier in traditional resist-based lithography and dry etch where polymeric byproduct layers are often formed at the edges. By patterning monolayers into geometric patterns of different dimensions and measuring the effective carrier lifetime, the non-radiative recombination velocity due to edge defects is extracted. Using this patterning technique, it is shown that selenide TMDs exhibit lower edge recombination velocity as compared to sulfide TMDs. The utility of scanning probe lithography towards understanding material-dependent edge recombination losses without significantly normalizing edge behaviors due to heavy defect generation, while allowing for eventual exploration of edge passivation schemes is highlighted, which is of profound interest for nanoscale electronics and optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.