Abstract

Nanofluidic systems offer a huge potential for discovery of new molecular transport and chemical phenomena that can be employed for future technologies. Herein, we report on the transport behavior of surface-reactive compounds in a nanometer-scale flow of phospholipids from a scanning probe. We have investigated microscopic deposit formation on polycrystalline gold by lithographic printing and writing of 1,2-dioleoyl-sn-glycero-3-phosphocholine and eicosanethiol mixtures, with the latter compound being a model case for self-assembled monolayers (SAMs). By analyzing the ink transport rates, we found that the transfer of thiols was fully controlled by the fluid lipid matrix allowing to achieve a certain jetting regime, i.e., transport rates previously not reported in dip-pen nanolithography (DPN) studies on surface-reactive, SAM-forming molecules. Such a transport behavior deviated significantly from the so-called molecular diffusion models, and it was most obvious at the high writing speeds, close to 100 μm s-1. Moreover, the combined data from imaging ellipsometry, scanning electron microscopy, atomic force microscopy (AFM), and spectroscopy revealed a rapid and efficient ink phase separation occurring in the AFM tip-gold contact zone. The force curve analysis indicated formation of a mixed ink meniscus behaving as a self-organizing liquid. Based on our data, it has to be considered as one of the co-acting mechanisms driving the surface reactions and self-assembly under such highly nonequilibrium, crowded environment conditions. The results of the present study significantly extend the capabilities of DPN using standard AFM instrumentation: in the writing regime, the patterning speed was already comparable to that achievable by using electron beam systems. We demonstrate that lipid flow-controlled chemical patterning process is directly applicable for rapid prototyping of solid-state devices having mesoscopic features as well as for biomolecular architectures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.