Abstract
Scanning thermoacoustic tomography was explored in the microwave region of the electromagnetic spectrum. Short microwave pulses were used to induce acoustic waves by thermoelastic expansion in biological tissues. Cross sections of tissue samples were imaged by a linear scan of the samples while a focused ultrasonic transducer detected the time-resolved thermoacoustic signals. Based on the microwave-absorption properties of normal and cancerous breast tissues, the piezoelectric signals in response to the thermoacoustic contrast were investigated over a wide range of electromagnetic frequencies and depths of tumor locations. The axial resolution is related to the temporal profile of the microwave pulses and to the impulse response of the ultrasonic transducer. The lateral resolution is related to the numerical aperture of the ultrasonic transducer as well as to the frequency spectra of the piezoelectric signals in the time window corresponding to the axial resolution. Gain compensation, counteracting the microwave attenuation, was applied to enhance the image contrast.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.