Abstract

Objective: Radio-opacity is a fundamental requirement for fissure sealants in order to be clearly visible radiographicallyand may be well differentiated from caries. Many attempts have been made to make resin based fissure sealants radio-opaque. Researchers achieved radio-opacity of the sealants by blending heavy metals as fillers into the polymeric matrix. Keeping the demerits of using heavy metals in view, a novel fissure sealant was developed by chemically incorporating Tin (Sn) in monomer of methacrylate. This study has been done to assess under scanning micro-radiography (SMR), the radiopacity of the indigenously prepared fissure sealants containing increasing amount of SnM until the consistency of the mix remains workable and clinically useful. Design: Experimental study. Place of study: Biophysical Lab Queen Mary University of London, United Kingdom. Methodology: An organo-tin compound – Methacryloxytri-n-butyltin (SnM) and Ethylene Glycol Dimethacrylate (EGDMA) in varying quantities were mixed to prepare fissure sealant indigenously. Camphorquinone (CQ) and N, N-Dimethyl-P-Toluidine (DMPT) were added to above mixture. The prepared sealants were polymerized in cuvettes and mounted on Scanning microradiography machine. The machine was run for 100 seconds repeatedly for 60 runs. Obtained results were processed and calculated in Microsoft Excel software. Results: It was observed that increasing the weight of Tin (Sn) content in a sealant increases the radio-opacity of the sealant but SnM more than 9.5 gm renders the material unworkable. Conclusion: This study will not only help in enhancing the radio-opacity of fissure sealants but also the radio-opacity of other clinical composite materials maybe enhanced by this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.