Abstract

Scanning Kelvin probe microscopy (SKPM) has been used to study the Fermi level shift in arsenic (As) doped cadmium telluride (CdTe) photovoltaic devices. The contact potential difference (CPD) between probe tip and sample surface revealed that increasing As concentrations in CdTe led to a decrease in CPD. This highlighted a downward shift in the CdTe Fermi level and an increase in the CdTe work function. Using a highly oriented pyrolytic graphite sample in ambient conditions as a reference, the absolute work functions of the CdTe samples were estimated to vary from 3.88 to 4.09 eV. High-resolution SKPM measurements revealed localized shifts in CPD at CdTe grain boundaries. This was directly correlated to As doping concentrations, and indicated the segregation of As to grain boundaries. A mechanism is proposed where localized band bending at grain boundaries channels minority carriers away from the grain boundary, leading to reduced carrier recombination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.