Abstract
We report observations of localized growth on the (1014) surface of single-crystal CaCO3 in supersaturated solutions while scanning with the tip of an atomic force microscope (AFM). At low contact forces, AFM scanning strongly enhances deposition along preexisting steps. This enhancement increases rapidly with increasing solution supersaturation, and is capable of filling in multilayer etch pits to produce defect-free surfaces at the resolution of the AFM. Attempts to achieve similar deposition rates in the absence of scanning require high supersaturations that produce three-dimensional crystal nuclei, which are important defects. Localized deposition produced by drawing the AFM tip back and forth across step edges can produce monolayer deposits extending well over a micron from the scanned area. These tip-induced deposits provide convincing evidence for the importance of ledge diffusion in calcite crystal growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.